
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

CAIE Computer Science IGCSE
7 - Algorithm design and

problem-solving
Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Program development life cycle
The program development life cycle describes the main stages involved in creating a
program. The four stages are: analysis, design, coding, and testing.

Stage Purpose Tasks

Analysis Understand
the problem
and what the
solution
needs to
achieve.

Abstraction: Removing unnecessary details to focus only on
what is important.​

Decomposition: Breaking the overall problem into smaller,
more manageable sub-problems.​

Identification of the problem: Clearly state what the problem
is.​

Identification of requirements: Work out what inputs,
processes, and outputs are required.

Design Plan the
solution
before writing
code.

Decomposition: Continue breaking down sub-problems into
smaller steps if needed.​

Design the solution: The solution to a problem can be
represented in several ways, including structure diagrams,
flowcharts, and pseudocode, to provide a plan for the coding
stage.

Coding Translate the
design into a
working
program.

Writing program code: Use a programming language to
implement the design.​

Iterative testing: Test the code repeatedly as it is written,
fixing errors as they occur.

Testing Check that
the program
works
correctly and
meets
requirements
.

Test program code: Run the program code, using test data to
make sure that it produces the correct output.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

System decomposition
Every computer system is made up of sub-systems. Each sub-system is made up of further
sub-systems. Breaking a system into sub-systems makes it easier to design, understand,
and test.

Decomposition is the process of breaking a problem into smaller, more manageable parts.
Each smaller part can then be solved separately. Each part will usually involve:

●​ Inputs: Data that goes into the system​

●​ Processes: Actions or calculations performed on the data​

●​ Outputs: Information produced by the system​

●​ Storage: Data saved for later use

Methods to design and construct a solution to a problem
In the design stage, the solution to a problem can be represented in the following forms.

Structure diagrams
Structure diagrams can be used to visually represent the process of decomposing a
problem. Each level, further down the structure diagram, shows tasks further broken down.

When coding the solution for the problem, each sub-system can be developed
independently, allowing work to be made on the system in parallel (by spreading the
workload across a team) and making testing and debugging easier.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Pseudocode
Pseudocode is a text-based way of describing a solution in structured steps. It uses
programming-like keywords but is language-independent. There is a specific set of
pseudocode keywords available online for the Cambridge IGCSE Computer Science exam.

Here’s an example of some pseudocode to ask the user to enter a number repeatedly until
the number they enter is less than or equal to 100.

INPUT Number
WHILE Number > 100 DO
 OUTPUT "The number is too large"
 INPUT Number
ENDWHILE
OUTPUT "The number is acceptable"

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Flowcharts
Flowcharts are diagrams that show the step-by-step flow of a process. You should be aware
of the following flowchart symbols:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Making use of these symbols, here's a typical flowchart to outline a process for inputting a
value and checking if it falls within a specific range (0 to 100 inclusive).

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Standard methods of solution
The following methods of solution can be used to solve many different problems.

Linear Search
Linear search is a searching algorithm, used to find items in a list. You can think of it as
going along a bookshelf one by one until you come across the book you’re looking for.
Sometimes the algorithm gets lucky and finds the desired element almost immediately, while
in other situations, if the desired element is towards the end of a list or the list is incredibly
long, the algorithm is incredibly inefficient.

Example
Find the position of Apple in the data.

0 1 2 3 4

Banana Orange Apple Kiwi Mango

First we inspect position 0, and find Banana. Not the element we’re after.

0 1 2 3 4

Banana Orange Apple Kiwi Mango

Next we inspect position 1, finding Orange. Again, not what we’re looking for.

0 1 2 3 4

Banana Orange Apple Kiwi Mango

Next we look at position 2 and find Apple, this is the data we’re looking for and so the
algorithm returns the index of Apple (2) and terminates.

Note: if the item was not found, a suitable error message should be output

Bubble sort
Sorting algorithms are designed to take a number of elements in any order and output them
in a logical order. Bubble sort is a common form of sorting algorithm that makes
comparisons and swaps between adjacent elements. The largest element in the unsorted
part of the input is said to “bubble” to the top of the data with each iteration of the algorithm.

The algorithm starts at the first element in an array and compares it to the second. If they are
in the wrong order, the algorithm swaps the pair. Otherwise, the algorithm moves on. The
process is then repeated for every adjacent pair of elements in the array until the end of the
array is reached (at which point the largest element is in the last position of the array).

This is referred to as one pass of the algorithm. For an array with n elements, the algorithm
will perform a maximum of n passes through the data, at which point the input is sorted and
can be returned.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Example
Use bubble sort to arrange the elements in the array into ascending order.

4 9 1 6 7

The two first elements are compared. They are in the correct order, so the algorithm moves
on.

4 9 1 6 7

4 1 9 6 7

The second two elements are in the wrong order, so they are swapped.

4 1 9 6 7

4 1 6 9 7

Again, the next two elements are in the wrong order, so they are swapped.

4 1 6 9 7

4 1 6 7 9

The last two elements are also in the wrong order, so are swapped.

This marks the end of the first pass of the algorithm.

The second pass starts at the beginning of the array and compares the first two elements.
They are in the wrong order, so are swapped.

4 1 6 7 9

1 4 6 7 9

The next two elements are in the correct order, so the algorithm moves on.

1 4 6 7 9

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Again the comparison reveals that the elements are in the correct order.

1 4 6 7 9

The last pair are also in the correct order, so no swap is made.

1 4 6 7 9

This is the end of the second pass, and we can see that the data is sorted. However, the
algorithm wouldn’t terminate here. It would carry out another final pass before terminating, to
confirm that the data is sorted by checking that no swaps are made.

Totalling
Totalling is used to work out the sum of a set of values. There are lots of scenarios where
totalling can be used, such as adding up a player’s score in each round of a game to find
their total score.

To find the total, create a variable that is initialised as 0, and then add each value to the total
using a loop.

Counting
Counting is used to count how many times something occurs.

To count the number of times something occurs, create a variable that is initialised as 0, and
increase the counter by 1 each time the condition is met. This is often used within WHILE
loops to control the number of repetitions.

Finding minimum and maximum values
To identify the largest or smallest value in a set:

●​ Start with the first value as the current maximum or minimum.
●​ Compare each new value with the current maximum/minimum and update if needed.

Finding the average value
To calculate the mean value in a set of numbers, use totalling to find the sum of all numbers.
Then divide the total by the count of numbers.
To find the median, select the item at the middle index (which can be found by dividing the
maximum index by 2).

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Validation
Validation is the process of checking that input data is reasonable and sensible before it is
accepted by the system. It prevents errors caused by incorrect or unrealistic data being
entered. There are several different types of validation check.

Range check
Ensures data is within a specified range.

Example: Age must be between 0 and 120.

Length check
Ensures data has the correct number of characters.

Example: A UK postcode should not exceed 8 characters.

Type check
Ensures data is of the correct data type.

Example: An age field must be numeric, not text.

Presence check
Ensures data is actually entered (not left blank).

Example: A name field must not be empty.

Format check
Ensures data is in the correct format or pattern.

Example: An email address must contain “@”.

Check digit
Extra digit calculated from the other digits, used to detect errors in entry.

Example: Commonly used in ISBN numbers and barcodes.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Verification
Verification is the process of checking that data has been correctly entered into the system,
matching the original source. It prevents errors that occur during data entry (for example,
typing mistakes).

Visual check
The user compares the data entered with the original source, checked by eye.

Example: Proofreading a typed-in address against a paper form.

Double entry check
Data is entered twice and compared by the system. If the two entries do not match, the user
must re-enter the data.

Example: Entering and confirming a new password.

Test data
Testing is used to make sure that a program works correctly and handles all possible inputs.
Different types of test data are used to check how the program responds.

Normal data
Data that is typical, valid, and within the expected range. Used to check the program works
under usual conditions.

Example: If age must be between 0 and 120, normal data could be 35.

Abnormal data
Data that is not acceptable and should be rejected. Used to check the program prevents
incorrect inputs, which could be common due to user misuse.

Example: If age must be between 0 and 120, abnormal data could be -5 or "hello".

Extreme data
The largest and smallest values that are still acceptable. Used to check the program handles
the very limits correctly.

Example: If age must be between 0 and 120, extreme data could be 0 and 120.

Boundary data
Includes both:

●​ The largest/smallest acceptable value (extreme).
●​ The next value just outside the limit (invalid/abnormal).

This ensures the program accepts the correct values and rejects the wrong ones without
causing any errors.

Example: If age must be between 0 and 120, boundary data could be:
Acceptable: 0, 120
Rejected: -1, 121

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Trace Tables and Dry-Runs
A dry-run is when you manually go through an algorithm step by step without running it on a
computer. It helps to check the logic, spot errors, and understand how variables change.

A trace table is used to record what happens during a dry-run. It shows the values of
variables, any outputs, and any user prompts at each step of the algorithm. They are useful
for testing and debugging an algorithm and to help a user understand its flow.

Example algorithm (pseudocode)
total ← 0
FOR i ← 1 TO 3
 PROMPT "Enter a number"
 INPUT number
 total ← total + number
NEXT i
OUTPUT total

Example trace table
This trace table is used to track variables, any outputs, and any user prompts at each step of
the above algorithm, with inputs 5, 7, and 2.

i number total Prompt shown Output

1 0 "Enter a number"

1 5 5

2 5 "Enter a number"

2 7 12

3 12 "Enter a number"

3 2 14

 14 14

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Identifying and correcting errors
When developing algorithms, errors can occur. Being able to spot errors and correct them is
an important skill. There are a few main types of error - you don’t need to know the names
specifically, but it’s useful to be aware of the types, common examples, and how to fix them.

Type of
Error

Example How to Fix

Syntax
error

Missing keyword: IF x = 5 THEN
(no ENDIF) Wrong spelling: PRNT
"Hello" instead of PRINT "Hello"

Carefully check pseudocode or code
against the rules of the language.
Add missing keywords or correct
spelling.

Logic
error

Using wrong operator: IF mark >
50 THEN instead of IF mark >= 50
THEN Wrong calculation: total ←
number instead of total ← total
+ number

Use dry-runs, trace tables, and test
data to spot unexpected behaviour.
Correct conditions or calculations so
they match the intended design.

Runtime
error

Dividing by zero: average ← total
/ count when count = 0 Invalid
index: Accessing item 11 in a list of 10
items

Add validation to prevent invalid input
or actions (e.g. check that count ≠
0). Ensure loops and indexes stay
within valid ranges.

Writing and amending algorithms for given problems or scenarios
An algorithm is a set of instructions to perform a specific task. In your exam, you’ll be asked
to write or amend algorithms for given problems or scenarios.

There are different ways to express an algorithm:

●​ Pseudocode: a text-based way of describing a solution in structured steps. It uses
programming-like keywords but is language-independent. There is a specific set of
pseudocode keywords available online for the Cambridge IGCSE Computer Science
exam.

●​ Program code: The actual code written in a specific programming language that can
be executed by a computer.

●​ Flowcharts: Diagrams that show the step-by-step flow of an algorithm. Make sure
that you know the flowchart symbols provided earlier in these notes.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	Program development life cycle
	

	System decomposition
	Methods to design and construct a solution to a problem
	Structure diagrams
	
	Pseudocode
	OUTPUT "The number is acceptable"
	
	
	Flowcharts

	
	Standard methods of solution
	Linear Search
	Example

	Bubble sort
	Example

	Totalling
	Counting
	Finding minimum and maximum values
	Finding the average value

	
	Validation
	Range check
	Length check
	

	Type check
	

	Presence check
	Format check
	Check digit

	
	Verification
	Visual check
	Double entry check

	Test data
	Normal data
	Abnormal data
	Extreme data
	Boundary data

	Trace Tables and Dry-Runs
	Example algorithm (pseudocode)
	Example trace table

	
	Identifying and correcting errors
	Writing and amending algorithms for given problems or scenarios

